空 挡 广 告 位 | 空 挡 广 告 位

ODG Patent | Compact Optics With Reduced Chromatic Aberrations

Patent: Compact Optics With Reduced Chromatic Aberrations

Publication Number: 10222618

Publication Date: 20190305

Applicants: Osterhout Group, Inc.

Abstract

Disclosed here in is a method of adjusting a tunable illuminating light source with a reflective display for a head mounted display to reduce chromatic artifacts in an image provided to a user’s eye. The method includes identifying a color associated with a chromatic-related artifact in a displayed image and adjusting the tunable illuminating light source to reduce the brightness of the color associated with the chromatic-related artifact.

BACKGROUND

* Field of the Invention*

This invention relates to see-through computer display systems.

* Description of Related Art*

Head mounted displays (HMDs) and particularly HMDs that provide a see-through view of the environment are valuable instruments. The presentation of content in the see-through display can be a complicated operation when attempting to ensure that the user experience is optimized. Improved systems and methods for presenting content in the see-through display are required to improve the user experience.

SUMMARY

Aspects of the present invention relate to methods and systems for the see-through computer display systems with conversion ability from augmented reality (i.e. high see-through transmission through the display) to virtual reality (i.e. low or no see-through transmission through the display).

In an aspect, a head-worn display may include a display panel sized and positioned to produce a field of view to present digital content to an eye of a user, and a processor adapted to present the digital content to the display panel such that the digital content is only presented in a portion of the field of view, the portion being in the middle of the field of view such that horizontally opposing edges of the field of view are blank areas. The processor may be further adapted to shift the digital content into one of the blank areas to adjust the convergence distance of the digital content and thereby change the perceived distance from the user to the digital content. The digital content may include augmented reality objects. The perceived distance may be within arm’s reach by the user. The convergence distance may be adjusted in correspondence to the type of digital content being displayed or a use case associated with augmented reality objects. The convergence may be measured by an eye imaging system of the head-worn display. The eye imaging system images a front perspective of the user’s eye.

In an aspect, a head-worn display may include a display panel sized and positioned to produce a field of view to present digital content to an eye of a user and a processor adapted to present the digital content to the display panel such that the digital content is only presented in a portion of the field of view, the portion being in the middle of the field of view such that horizontally opposing edges of the field of view are blank areas. The processor may be further adapted to shift the digital content into one of the blank areas to adjust the position of the digital content based on a focus distance of the digital content.

In an aspect, a head-worn display may include a display panel sized and positioned to produce a field of view to present digital content to an eye of a user and a processor adapted to present the digital content to the display panel such that the digital content is only presented in a portion of the field of view, the portion being in the middle of the field of view such that horizontally opposing edges of the field of view are blank areas. The processor may be further adapted to shift the digital content into one of the blank areas to adjust the position of the digital content based on a an indication that the user is looking towards an edge of the digital content. The indication that the user is looking towards an edge of the digital content may be based on an eye image captured by a camera in the head-worn display. The indication that the user is looking towards an edge of the digital content may be based on an indication that the user turned the user’s head followed quickly by the user turning the user’s eyes.

In an aspect, a head-worn display may include a display panel sized and positioned to produce a field of view to present digital content to an eye of a user and a processor adapted to present the digital content to the display panel such that the digital content is only presented in a portion of the field of view, the portion being in the middle of the field of view such that horizontally opposing edges of the field of view are blank areas, wherein each blank area comprises approximately 10% or greater of the field of view lateral area. The processor may be further adapted to shift the digital content into one of the blank areas to adjust the position of the digital content. A total amount of blank area in the field of view, including a combined left and right portion of the field of view, remains constant while the left and right portions are changed to position the digital content within the field of view. The digital content may be positioned to adjust a convergence distance associated with the digital content. The digital content may be positioned to adjust an interpupillary distance associated with the digital content.

In embodiments, compact and lower cost optics for a head mounted display are provided by combining a reflective display such as an LCOS display with a partial reflector positioned in the middle of the optical assembly and a non-polarized folded path combiner. The reflective display can include pixels with or without color filters, wherein pixels without a color filter array require sequential color illumination to provide a full color image to the user and pixels with a color filter array are illuminated with non-sequential light (e.g. a white light, a multi-colored tuned light) to provide a full color image to the user. A monochrome light can be used to provide a monochrome image to the user whether the reflective display includes pixels that have color filters or not. Various light traps are provided to reduce stray light and thereby provide a displayed image to a user with higher contrast. An illumination source is provided that emits illuminating light with a non-uniform beam distribution so that after passing through the remaining optics, the illumination incident onto the reflective display is uniform and as a result the image presented to the user has improved brightness uniformity.

In an aspect, an optical system for a head-worn computer may include a light source positioned within the head-worn computer and adapted to project polarized illuminating light towards a partially reflective partially transmissive surface such that the illuminating light reflects through a field lens and towards a reflective display, wherein the illuminating light reflects off a surface of the reflective display, forming image light, and wherein the image light is then transmitted through the field lens and then through the partially reflective partially transmissive surface to a lower display optical system adapted to present the image light to an eye of a user wearing the head-worn computer. The partially reflective partially transmissive surface is a film that includes a flat segment. The partially reflective partially transmissive surface is a reflective polarizer. The reflective display may be an LCOS or an FLCOS. The field lens has less than 30 nm birefringence. The lower display optical system also provides a see-through view of the surrounding environment. The partially reflective partially transmissive surface is a combined polarizer including a centrally located reflective polarizer that reflects illuminating light to an active area of the reflective display, attached to a larger absorptive polarizer, that absorbs excess illuminating light.

In an aspect, an optical system for a head-worn computer may include a light source positioned within the head-worn computer and adapted to project non-polarized illuminating light towards a partially reflective partially transmissive surface such that the illuminating light reflects through a field lens and towards a reflective display, and a polarizing film adjacent to a surface of the reflective display that polarizes the illuminating light after it passes through the field lens, wherein the illuminating light reflects off a surface of the reflective display, forming image light which is then analyzed by the polarizing film prior to being transmitted through the field lens and then through the partially reflective partially transmissive surface to a non-polarizing lower display optical system adapted to present the image light to an eye of a user wearing the head-worn computer. The field lens has more than 30 nm of birefringence. The polarizing film is an absorptive polarizer. The polarizing film is a circular polarizer. The quarter wave film of the circular polarizer faces the reflective display. The non-polarizing lower display system also provides a see-through view of the surrounding environment. The reflective display is an LCOS or FLCOS. The reflective display is an interferometric modulator display. The optical system may further include a light trap positioned adjacent to a wall of a housing opposite the light source to trap stray light that is not reflected by the partially reflective partially transmissive surface. The light trap may include flat black paint. The light trap may include a textured structure. The partially reflective partially transmissive surface may be a segmented surface with at least one flat segment.

In an aspect, a compact optical system with improved contrast for a head-worn computer may include a light source including a lens with positive optical power positioned within the head-worn computer and adapted to project converging illuminating light towards a partially reflective partially transmissive surface wherein the illuminating light forms a spot with an area smaller than the light source on the partially reflective partially transmissive surface prior to being reflected as diverging illuminating light that passes through a field lens and towards a reflective display, wherein the illuminating light reflects off a surface of the reflective display, forming diverging image light which is transmitted through the field lens and then through the partially reflective partially transmissive surface to a lower display optical system adapted to present the image light to an eye of a user wearing the head-worn computer. The reflective display is an LCOS or an FLCOS. The reflective display is an interferometric modulator display. The lens with positive optical power may be a Fresnel lens or a diffractive lens. The lens with positive optical power may be positioned at a distance from a center of the partially reflective partially transmissive surface that is approximately equal to a focal length of the lens with positive optical power. The light source may be positioned at a distance from the lens with positive optical power that approximately equals half the focal length of the lens with positive optical power. The lens with positive optical power may be designed to compensate for the effect of the field lens so that illuminating light is provided with a uniform distribution across the surface of the reflective display. A light control assembly may provide a non-uniform distribution of illuminating light to the partially reflective partially transmissive surface so that illuminating light is provided with a uniform distribution across the surface of the reflective display. The partially reflective partially transmissive surface may be a segmented surface that includes a flat surface where the spot is formed.

In an aspect, compact optics for a head-worn computer that provides increased color gamut may include a reflective display with an array of pixels that includes a color filter array, a non-sequential light source that illuminates the reflective display, and optics that direct image light comprising light reflected by the reflective display to an eye of a user, wherein the non-sequential light source includes an adjustable light source including multiple independently controllable lights with different colors. The multiple independently controllable lights may be LEDs. The different colors may include red, green, blue, cyan, magenta, or yellow. The multiple independently controllable lights may each provide narrow wavelength bands of light. The wavelength bands may be each less than 40 nm wide. The multiple independently controllable lights may each provide light with purity over 60%.

In an aspect, a method of adjusting a tunable illuminating light source with a reflective display for a head mounted display to reduce chromatic artifacts in an image provided to a user’s eye may include identifying a color associated with a chromatic-related artifact in a displayed image, and adjusting the tunable illuminating light source to reduce the brightness of the color associated with the chromatic-related artifact. The tunable illuminating light source may further include multiple LEDs with different colors. Adjusting may include reducing the brightness of one of the LEDs relative to the brightness of the other LEDs. The chromatic-related artifact may be lateral color or a diffractive artifact associated with a lower diffractive order. The tunable illuminating light source may provide sequential color illumination of the reflective display or non-sequential illumination of the reflective display.

These and other systems, methods, objects, features, and advantages of the present invention will be apparent to those skilled in the art from the following detailed description of the preferred embodiment and the drawings. All documents mentioned herein are hereby incorporated in their entirety by reference.

您可能还喜欢...