空 挡 广 告 位 | 空 挡 广 告 位

Sony Patent | Information processing apparatus, information processing method, and program

Patent: Information processing apparatus, information processing method, and program

Drawings: Click to check drawins

Publication Number: 20210232219

Publication Date: 20210729

Applicant: Sony

Abstract

It is desired to provide a technology capable of controlling an object so as to improve user convenience. An information processing apparatus is provided. The information processing apparatus includes an object control unit that: suppresses a movement of a first object, on the basis of a first line-of-sight movement in which a gaze point of a user moves toward a first part of the first object or has moved to the first part; and moves the first object such that the first object leaves away from the gaze point of the user, on the basis of a second line-of-sight movement in which the gaze point of the user moves toward a second part of the first object different from the first part or has moved to the second part.

Claims

  1. An information processing apparatus comprising an object control unit that: suppresses a movement of a first object, on a basis of a first line-of-sight movement in which a gaze point of a user moves toward a first part of the first object or has moved to the first part; and moves the first object such that the first object leaves away from the gaze point of the user, on a basis of a second line-of-sight movement in which the gaze point of the user moves toward a second part of the first object different from the first part or has moved to the second part.

  2. The information processing apparatus according to claim 1, wherein the first part includes a face of the first object.

  3. The information processing apparatus according to claim 2, wherein the object control unit turns the face of the first object toward the user on a basis of the first line-of-sight movement or the second line-of-sight movement.

  4. The information processing apparatus according to claim 3, wherein the second part includes a body of the first object, and the object control unit turns a front surface of the body of the first object toward the user after turning the face of the first object toward the user, on a basis of the first line-of-sight movement.

  5. The information processing apparatus according to claim 3, wherein the object control unit turns the face of the first object away from the user, when the gaze point of the user moves to a second object different from the first object, after turning the face of the first object toward the user.

  6. The information processing apparatus according to claim 2, wherein the object control unit starts control of communication from the first object to the user, on a basis of a determination that the gaze point of the user is located on the face of the first object.

  7. The information processing apparatus according to claim 6, wherein when the first object is arranged in association with a third object, the object control unit continues the control of the communication while the gaze point of the user is moving between the first object and the third object.

  8. The information processing apparatus according to claim 1, wherein the first line-of-sight movement includes that the gaze point of the user is located on the first part, and the second line-of-sight movement includes that the gaze point of the user is located on the second part.

  9. The information processing apparatus according to claim 1, wherein the object control unit moves the first object such that the first object leaves away from the gaze point of the user, before the gaze point of the user reaches the second part, on a basis of the second line-of-sight movement.

  10. The information processing apparatus according to claim 1, wherein the object control unit moves the first object such that the first object leaves away from the gaze point of the user, by moving the first object in a vector direction according to a vector direction of a line-of-sight movement of the user, on a basis of the second line-of-sight movement.

  11. The information processing apparatus according to claim 1, wherein the object control unit: moves the first object in a downward direction when a vector direction of a visual field change of the user is an upward direction; or moves the first object in an upward direction when the vector direction of the visual field change of the user is a downward direction.

  12. The information processing apparatus according to claim 1, wherein the object control unit moves the first object to a peripheral visual field of the user when the gaze point of the user has not moved toward the first object.

  13. The information processing apparatus according to claim 12, wherein the first object includes a virtual object displayed in a display area of a display apparatus, and the object control unit moves the virtual object to a boundary of the display area of the display apparatus when the gaze point of the user has not moved toward the virtual object.

  14. The information processing apparatus according to claim 12, wherein the first object includes a real object capable of moving autonomously.

  15. The information processing apparatus according to claim 1, wherein the object control unit: moves the first object at a first moving speed on a basis of a determination that the gaze point of the user is located on a fourth object different from the first object; and moves the first object at a second moving speed slower than the first moving speed, on a basis of a determination that the first object and the fourth object have a predetermined positional relationship, and the second line-of-sight movement.

  16. The information processing apparatus according to claim 15, wherein the predetermined positional relationship includes a relationship in which the first object and the fourth object are present within a predetermined area of a visual field of the user.

  17. The information processing apparatus according to claim 1, wherein the first object includes an object localized in a real space on a basis of information in the real space.

  18. The information processing apparatus according to claim 1, wherein the information processing apparatus includes a head mounted display (HMD).

  19. An information processing method comprising: suppressing, by a processor, a movement of a first object, on a basis of a first line-of-sight movement in which a gaze point of a user moves toward a first part of the first object or has moved to the first part; and moving, by the processor, the first object such that the first object leaves away from the gaze point of the user, on a basis of a second line-of-sight movement in which the gaze point of the user moves toward a second part of the first object different from the first part or has moved to the second part.

  20. A program for causing a computer to function as an information processing apparatus comprising an object control unit that: suppresses a movement of a first object, on a basis of a first line-of-sight movement in which a gaze point of a user moves toward a first part of the first object or has moved to the first part; and moves the first object such that the first object leaves away from the gaze point of the user, on a basis of a second line-of-sight movement in which the gaze point of the user performs toward a second part of the first object different from the first part or has moved to the second part.

Description

TECHNICAL FIELD

[0001] The present disclosure relates to an information processing apparatus, an information processing method, and a program.

BACKGROUND ART

[0002] In recent years, a technology for moving an object on the basis of the line of sight of a user is known. For example, a technology is disclosed in which a candidate for an operation target object is specified on the basis of the position of the line of sight of the user, and when there is a plurality of specified candidates, at least one of the plurality of candidates is moved such that the plurality of candidates is separated from each other (see, for example, Patent Document 1).

CITATION LIST

PATENT DOCUMENT

[0003] Patent Document 1: International Publication No. 2017/187708

SUMMARY OF THE INVENTION

PROBLEMS TO BE SOLVED BY THE INVENTION

[0004] However, it is desired to provide a technology capable of controlling the object so as to improve user convenience.

SOLUTIONS TO PROBLEMS

[0005] The present disclosure provides an information processing apparatus including an object control unit that: suppresses a movement of a first object, on the basis of a first line-of-sight movement in which a gaze point of a user moves toward a first part of the first object or has moved to the first part; and moves the first object such that the first object leaves away from the gaze point of the user, on the basis of a second line-of-sight movement in which the gaze point of the user moves toward a second part of the first object different from the first part or has moved to the second part.

[0006] The present disclosure provides an information processing method including: suppressing, by a processor, a movement of a first object, on the basis of a first line-of-sight movement in which a gaze point of a user moves toward a first part of the first object or has moved to the first part; and moving, by the processor, the first object such that the first object leaves away from the gaze point of the user, on the basis of a second line-of-sight movement in which the gaze point of the user moves toward a second part of the first object different from the first part or has moved to the second part.

[0007] The present disclosure provides a program for causing a computer to function as an information processing apparatus including an object control unit that: suppresses a movement of a first object, on the basis of a first line-of-sight movement in which a gaze point of a user moves toward a first part of the first object or has moved to the first part; and moves the first object such that the first object leaves away from the gaze point of the user, on the basis of a second line-of-sight movement in which the gaze point of the user moves toward a second part of the first object different from the first part or has moved to the second part.

EFFECTS OF THE INVENTION

[0008] As described above, according to the present disclosure, a technology capable of controlling an object so as to improve user convenience is provided. Note that the above-mentioned effect is not necessarily limited, and any effects indicated in the present description or other effects that can be learned from the present description may be exhibited together with the above-mentioned effect or instead of the above-mentioned effect.

BRIEF DESCRIPTION OF DRAWINGS

[0009] FIG. 1 is a diagram illustrating a configuration example of an information processing system according to embodiments of the present disclosure.

[0010] FIG. 2 is a diagram illustrating a functional configuration example of an information processing apparatus.

[0011] FIG. 3 is a diagram illustrating a detailed configuration example of a control unit.

[0012] FIG. 4 is a diagram for explaining an example of agent control.

[0013] FIG. 5 is a diagram for explaining an example of agent control.

[0014] FIG. 6 is a diagram for explaining an example of agent control.

[0015] FIG. 7 is a diagram for explaining an example of agent control.

[0016] FIG. 8 is a diagram for explaining an example of agent control.

[0017] FIG. 9 is a flowchart illustrating an action example of the information processing apparatus.

[0018] FIG. 10 is a flowchart illustrating an action example of the information processing apparatus.

[0019] FIG. 11 is a flowchart illustrating an action example of the information processing apparatus.

[0020] FIG. 12 is a diagram for explaining a first modification of agent control.

[0021] FIG. 13 is a diagram for explaining the first modification of agent control.

[0022] FIG. 14 is a diagram for explaining a second modification of agent control.

[0023] FIG. 15 is a diagram for explaining the second modification of agent control.

[0024] FIG. 16 is a diagram for explaining the second modification of agent control.

[0025] FIG. 17 is a diagram for explaining the second modification of agent control.

[0026] FIG. 18 is a diagram for explaining the second modification of agent control.

[0027] FIG. 19 is a diagram for explaining a third modification of agent control.

[0028] FIG. 20 is a diagram for explaining the third modification of agent control.

[0029] FIG. 21 is a block diagram illustrating a hardware configuration example of the information processing apparatus.

MODE FOR CARRYING OUT THE INVENTION

[0030] Hereinafter, favorable embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. Note that, in the present description and the drawings, constituent elements having substantially the same functional configuration will be denoted by the same reference numeral and redundant description will be omitted.

[0031] Furthermore, in the present description and the drawings, a plurality of constituent elements having substantially the same or equivalent functional configuration is sometimes distinguished by attaching different numerals after the same reference numeral. However, when it is not necessary to particularly distinguish each of a plurality of constituent elements having substantially the same or equivalent functional configuration, only the same reference numeral is attached. In addition, equivalent constituent elements of different embodiments are sometimes distinguished by attaching different alphabets after the same reference numeral. However, when it is not necessary to particularly distinguish each of equivalent constituent elements, only the same reference numeral is attached.

[0032] Note that the description will be given in the following order.

[0033] 0. Overview

[0034] 1. Details of Embodiments [0035] 1.1. System Configuration Example [0036] 1.2. Functional Configuration Example of Information Processing Apparatus [0037] 1.3. Details of Functions of Information Processing System [0038] 1.3.1. Agent Control [0039] 1.3.2. Action of Information Processing Apparatus [0040] 1.3.3. Various Modifications

[0041] 2. Hardware Configuration Example

[0042] 3. Conclusion

[0043] <0. Overview>

[0044] First, the overview of embodiments of the present disclosure will be described. In recent years, a technology for moving an object on the basis of the line of sight of a user is known. For example, a technology is disclosed in which a candidate for an operation target object is specified on the basis of the position of the line of sight of the user, and when there is a plurality of specified candidates, at least one of the plurality of candidates is moved such that the plurality of candidates is separated from each other. However, it is desired to provide a technology capable of controlling the object so as to improve user convenience.

[0045] For example, it is assumed that the position of the object that is highly convenient for the user differs depending on the user’s degree of interest in the object. Moreover, it is assumed that where the user’s gaze point is likely to be located in the object is varied depending on the user’s degree of interest in the object. Therefore, in the embodiments of the present disclosure, a technology of controlling the position of an object depending on where the user’s gaze point is located in the object will be mainly described.

[0046] For example, it is assumed that, when the user’s degree of interest in the object is stronger than a certain extent, the user’s gaze point is likely to be present in a first part (for example, the face of the object), and when the user’s interest in the object is weaker than a certain extent, the user’s gaze point is likely to be present in a second part (for example, the body of the object) different from the first part of the object. Therefore, in the embodiments of the present disclosure, a technology of differentiating the positions of the object between a case where the user’s gaze point is located in the first part of object and a case where the user’s gaze point is located in the second part of the object will be mainly described.

[0047] Note that, in the following description, a case where the first part includes the face of the object will be given as an example, and a case where the second part includes the body of the object (a trunk portion below the neck portion) will be given as an example. However, the first part and the second part are not limited to such examples. For example, the first part may include the head (including the face) of the object. Moreover, the neck portion of the object may be included in the first part, or may be included in the second part, or may not be included in either part.

[0048] Furthermore, in the embodiments of the present disclosure, an object (first object) whose movement is controlled depending on the position of the gaze point of the user is sometimes referred to as an “agent”. The agent can also contain meaning of an object that performs a process on behalf of the user. However, the agent according to the embodiments of the present disclosure is not necessarily an object that performs a process on behalf of the user, and the type of the process performed by the agent according to the embodiments of the present disclosure is not particularly limited.

[0049] Moreover, in the embodiments of the present disclosure, a case where the agent is an object (virtual object) displayed in the display area of a display unit 152 will be mainly described. However, the agent may be a real object capable of moving autonomously. At this time, the movement of the real object may be enabled in any way. For example, when the real object includes a rotating body (for example, a tire, a wheel, or a roller), the real object may be capable of moving on a surface (for example, on a floor surface) by rotationally driving the rotating body. Alternatively, when the real object includes a foot portion, the real object may be capable of moving on a surface (for example, on a floor surface) by driving the foot portion as if walking.

[0050] Heretofore, the overview of the embodiments of the present disclosure has been described.

[0051] <1. Details of Embodiments>

[0052] First, details of the embodiments of the present disclosure will be described.

[0053] [1.1. System Configuration Example]

[0054] First, a configuration example of an information processing system according to the embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 is a diagram illustrating a configuration example of the information processing system according to the embodiments of the present disclosure. As illustrated in FIG. 1, the information processing system according to the embodiments of the present disclosure includes an information processing apparatus 10. The information processing apparatus 10 is utilized by a user U1.

[0055] Note that, in the present embodiments, a case where the information processing apparatus 10 is a head mounted display (HMD) worn on the head of the user U1 will be mainly described. Particularly, in the present embodiments, a case where the information processing apparatus 10 is a see-through type HMD will be mainly described. However, the information processing apparatus 10 is not limited to the HMD. For example, the information processing apparatus 10 may be a smartphone, a mobile phone, a tablet terminal, a camera, a personal computer (PC), or another type of equipment.

[0056] The user U1 can visually recognize the real space. In the example illustrated in FIG. 1, the user U1 can visually recognize the real space through the information processing apparatus 10. Any object may be present in the real space. In the example illustrated in FIG. 1, a person 40 is present in the real space as an example of a second object different from the above-mentioned agent. However, the person 40 is merely an example of the second object. Therefore, instead of the person 40, another object may be present in the real space as the second object. A third object will be described later.

[0057] Furthermore, in the example illustrated in FIG. 1, a map 30 is present in the real space as an example of a fourth object different from the above-mentioned agent. Then, in the example illustrated in FIG. 1, the map 30 is a floor map, and a plurality of stores present on a floor is drawn on the map 30. However, the map 30 is merely an example of the fourth object. Therefore, instead of the map 30, another object may be present in the real space as the fourth object.

[0058] Heretofore, a configuration example of the information processing system according to the embodiments of the present disclosure has been described.

[0059] [1.2. Functional Configuration Example of Information Processing Apparatus]

[0060] Subsequently, a functional configuration example of the information processing apparatus 10 will be described. FIG. 2 is a diagram illustrating a functional configuration example of the information processing apparatus 10. As illustrated in FIG. 2, the information processing apparatus 10 includes a visual field analysis imaging unit 111, a line-of-sight detection imaging unit 112, a sensor unit 113, a control unit 120, a storage unit 130, a communication unit 140, and a display unit 152. Furthermore, the information processing apparatus 10 may be connected to a server apparatus (not illustrated) via a communication network. The communication network includes, for example, the Internet.

[0061] The visual field analysis imaging unit 111 has a function of obtaining an image (visual field analysis image) by imaging the visual field of the user U1. For example, the visual field analysis imaging unit 111 includes a camera (including an image sensor), and obtains the visual field analysis image captured by the camera. The number of cameras included in the visual field analysis imaging unit 111 is not particularly limited as long as one or more cameras are included. Additionally, the position at which the visual field analysis imaging unit 111 is provided is also not particularly limited. Here, a case where the visual field analysis imaging unit 111 is present inside the information processing apparatus 10 is mainly assumed, but the visual field analysis imaging unit 111 may be present outside the information processing apparatus 10.

[0062] The line-of-sight detection imaging unit 112 has a function of obtaining an image (line-of-sight detection image) by imaging the eye of the user U1. For example, the line-of-sight detection imaging unit 112 includes a camera (including an image sensor), and obtains the line-of-sight detection image captured by the camera. The number of cameras included in the line-of-sight detection imaging unit 112 is not particularly limited as long as one or more cameras are included. Additionally, the position at which the line-of-sight detection imaging unit 112 is provided is also not particularly limited. Here, a case where the line-of-sight detection imaging unit 112 is present inside the information processing apparatus 10 is mainly assumed, but the line-of-sight detection imaging unit 112 may be present outside the information processing apparatus 10.

[0063] The sensor unit 113 includes a sensor in the configuration, and has a function of detecting the motion of the visual field of the user U1. For example, the sensor unit 113 can include an acceleration sensor in the configuration, and detect the motion of the visual field of the user U1 according to the acceleration detected by the acceleration sensor. Alternatively, the sensor unit 113 can include a gyro sensor in the configuration, and detect the motion of the visual field of the user U1 according to the angular velocity detected by the gyro sensor. Note that the motion of the visual field of the user U1 may be detected on the basis of the visual field analysis image captured by the visual field analysis imaging unit 111.

[0064] Furthermore, the sensor unit 113 has a function of detecting the position and posture of the head (sensor unit 113) of the user U1. For example, the sensor unit 113 can include a position sensor (for example, a global positioning system (GPS) sensor) in the configuration, and detect the position of the head of the user U1 by the position sensor.

[0065] In addition, the sensor unit 113 can include a geomagnetic sensor in the configuration, and detect the posture of the head of the user U1 by the geomagnetic sensor. Moreover, the sensor unit 113 may detect the posture of the user with higher accuracy on the basis of at least one of an acceleration sensor or a gyro sensor in addition to the geomagnetic sensor or instead of the geomagnetic sensor. Alternatively, when a camera is installed outside the information processing apparatus 10, the orientation of the face recognized from an image captured by the outside camera may be detected as the posture of the head of the user U1. Note that the position and posture of the head of the user U1 may be detected on the basis of the visual field analysis image captured by the visual field analysis imaging unit 111.

[0066] The communication unit 140 includes a communication circuit in the configuration, and has a function of acquiring data from a server apparatus (not illustrated) connected to the communication network and providing data to the server apparatus (not illustrated) via the communication network. For example, the communication unit 140 is configured from a communication interface. Note that one server apparatus (not illustrated) or a plurality of server apparatuses (not illustrated) may be connected to the communication network.

[0067] The storage unit 130 includes a memory in the configuration, and is a recording medium that stores a program executed by the control unit 120 and stores data necessary for the execution of the program. Furthermore, the storage unit 130 temporarily stores data for computation by the control unit 120. The storage unit 130 is configured from a magnetic storage unit device, a semiconductor storing device, an optical storing device, a magneto-optical storing device, or the like.

[0068] The display unit 152 has a function of displaying various screens. The type of the display unit 152 is not limited. For example, the display unit 152 only needs to be a display capable of providing a view that can be visually recognized by the user, and may be a liquid crystal display or an organic electro-luminescence (EL) display.

[0069] The control unit 120 executes control of each unit of the information processing apparatus 10. For example, the control unit 120 can be configured from one or a plurality of central processing units (CPUs) or the like. When the control unit 120 is configured from a processing unit such as a CPU, this processing unit can be configured from an electronic circuit. The control unit 120 can be implemented by such a processing unit executing a program.

[0070] FIG. 3 is a diagram illustrating a detailed configuration example of the control unit 120. As illustrated in FIG. 3, the control unit 120 includes a line-of-sight information acquisition unit 121, a visual field information acquisition unit 122, a determination unit 125, and an object control unit 129. Details of each of these functional blocks will be described later.

[0071] Heretofore, a functional configuration example of the information processing apparatus 10 according to the present embodiments has been described.

[0072] [1.3. Details of Functions of Information Processing System]

[0073] Subsequently, details of the functions of the information processing system according to the present embodiments will be described.

[0074] (1.3.1. Agent Control)

[0075] Examples of agent control will be described with reference to FIGS. 4 to 8. FIGS. 4 to 8 are diagrams for explaining examples of agent control. Referring to FIGS. 4 to 8, the user U1 is present in the real space. Note that, actually, the user U1 wears the information processing apparatus 10 on his/her head, but in the embodiments of the present disclosure, the illustration of the information processing apparatus 10 worn on the head of the user U1 is appropriately omitted.

[0076] Referring to FIG. 4, a visual field 60-1 of the user U1 is illustrated. The map 30 is present in the visual field 60-1. The object control unit 129 designates (localizes) the position of an agent 20 in the real space on the basis of information in the real space (for example, the user’s gaze point), and arranges the agent at the designated position. First, the object control unit 129 arranges the agent 20 at an initial position in the real space on the basis of the information in the real space. The initial position is not particularly limited. Here, a case where the initial position falls within a peripheral visual field of the user U1 and the object control unit 129 arranges the agent 20 in the peripheral visual field is assumed. This arrangement ensures that the visual recognition of objects (real objects or virtual objects) other than the agent 20 present in a central visual field is not obstructed. Note that the peripheral visual field may be regarded as an area outside the central visual field of the user U1.

[0077] In addition, when the user is tired, the user tends to turn the line of sight downward. Therefore, when the agent 20 is arranged on an upper side of the middle of the visual field, the hindrance of visual recognition of objects other than the agent 20 present on a lower part of the visual field can be suppressed.

[0078] Here, the central visual field can be an area including the center of the visual field 60-1. For example, the central visual field can be an area sandwiched by straight lines that are each a straight line passing through the position of the head of the user U1 and have an angle (A1/2) as an angle formed with the center of the visual field 60-1. The specific size of the angle A1 is not limited. In particular, when the agent 20 is a virtual object, the object control unit 129 can arrange the agent 20 in the central visual field by displaying the agent 20 in a middle area of the display area of the display unit 152.

[0079] Furthermore, the peripheral visual field can be an area obtained by excluding the central visual field from an area sandwiched by straight lines that are each a straight line passing through the position of the head of the user U1 and have an angle (A2/2) as an angle formed with the center of the visual field 60-1. The specific size of the angle A2 is not limited. In particular, when the agent 20 is a virtual object, the object control unit 129 can arrange the agent 20 in the peripheral visual field by displaying the agent 20 on the boundary (in a boundary area) of the display area of the display unit 152.

[0080] As described above, when the position and posture of the head of the user U1 are detected by the sensor unit 113, the visual field information acquisition unit 122 acquires position information and posture information on the head of this user U1. Besides, the visual field information acquisition unit 122 acquires the visual field analysis image captured by the visual field analysis imaging unit 111.

[0081] The line-of-sight information acquisition unit 121 acquires line-of-sight information on the user U1. The line-of-sight information acquisition unit 121 may acquire the line-of-sight information on the user U1 in any way. Here, a case where the line-of-sight information acquisition unit 121 detects the positional relationship between the center position of the pupil and the Purkinje image from the line-of-sight detection image, and calculates the line of sight on the basis of the detected positional relationship is mainly assumed. However, the line-of-sight information acquisition unit 121 may acquire the posture information on the head of the user U1 as the line-of-sight information.

[0082] The determination unit 125 detects a gaze point 50-1 of the user U1 in the real space on the basis of the position information and posture information on the head of the user U1 and the line-of-sight information on the user U1.

[0083] Then, the determination unit 125 determines whether or not the gaze point 50-1 is moving toward the agent 20 or has moved to the agent 20. For example, the determination unit 125 can determine that the gaze point 50-1 has moved toward the agent 20 when it is predicted that the gaze point 50-1 will reach the agent 20, on the basis of a change in the gaze point 50-1. Meanwhile, the determination unit 125 can determine that the gaze point 50-1 has moved to the agent 20 when the gaze point 50-1 is actually located on the agent 20.

[0084] In the example illustrated in FIG. 4, the gaze point 50-1 is present at a position different from the position of the agent 20. The determination unit 125 determines that the gaze point 50-1 has not moved toward the agent 20 and the gaze point 50-1 has not moved to the agent 20. In this manner, when the determination unit 125 determines that the gaze point 50-1 has not moved toward the agent 20 or has not moved to the agent 20, the object control unit 129 simply continues a state in which the agent 20 is arranged in the peripheral visual field (simply moves the agent 20 in the real space according to a change in the visual field 60-1 such that the agent 20 is continuously located in the peripheral visual field).

[0085] Referring to FIG. 5, the visual field of the user U1 has changed from the visual field 60-1 (FIG. 4) to a visual field 60-2. The determination unit 125 determines whether or not a line-of-sight movement (first line-of-sight movement) has occurred in which a gaze point 50-2 moves toward a face 21 of the agent 20 or has moved to the face 21 of the agent 20. For example, the determination unit 125 can determine that the gaze point 50-2 has moved toward the face 21 when it is predicted that the gaze point 50-2 will reach the face 21 on the basis of a change in the gaze point 50-2 (before the gaze point 50-2 reaches the face 21). Meanwhile, the determination unit 125 can determine that the gaze point 50-2 has moved to the face 21 when the gaze point 50-2 is actually located on the face 21.

[0086] In the example illustrated in FIG. 5, the gaze point 50-2 is located on the face 21. Therefore, the determination unit 125 determines that the line-of-sight movement (first line-of-sight movement) has occurred in which the gaze point 50-2 has moved to the face 21. In this manner, when the determination unit 125 determines that the line-of-sight movement (first movement) in which the gaze point 50-2 moves toward the face 21 or has moved to the face 21 has occurred, the object control unit 129 simply suppresses the movement of the agent 20 on the basis of such a line-of-sight movement (first line-of-sight movement). It is assumed that this makes it easier for the user U1 to visually recognize the agent 20.

[0087] Note that, as illustrated in FIGS. 4 and 5, the object control unit 129 may change the orientation of the face 21 on the basis of the line-of-sight movement (first line-of-sight movement) in which the gaze point 50-2 (gaze point 50-1) moves toward the face 21 or has moved to the face 21. For example, in FIG. 4, the object control unit 129 turns a front surface of the agent 20 toward a further side as viewed from the user U1. Compared to this, as illustrated in FIG. 5, the object control unit 129 can turn the face 21 toward the user U1 on the basis of the line-of-sight movement (first line-of-sight movement) in which the gaze point 50-2 moves toward the face 21 or has moved to the face 21. This makes it easier for the user U1 to intuitively understand that the gaze point 50-2 moves toward the face 21 or has moved to the face 21. Note that, in contrast to FIG. 5, in FIG. 4, a front surface of the agent 20 faces a further side as viewed from the user U1 (looks the other way). Therefore, the user U1 is more easily allowed to intuitively understand that the gaze point 50-1 has not moved toward the face 21 of the agent 20 or has not moved to the face 21.

[0088] In more detail, the object control unit 129 can turn a front surface of a body 22 toward the user U1 after turning the face 21 toward the user U1, on the basis of the line-of-sight movement (first line-of-sight movement) in which the gaze point 50-2 moves toward the face 21 or has moved to the face 21. This makes it easier for the user U1 to intuitively understand that the gaze point 50-2 moves toward the face 21 or has moved to the face 21, by the natural motion of the agent 20.

[0089] Note that the determination unit 125 does not have to determine whether or not the line-of-sight movement (first line-of-sight movement) in which the gaze point 50-2 has moved to the face 21 has occurred, when the face 21 is not present in the visual field 60-2. This is because, in a case where the face 21 is turned toward the user U1 from the time point when the face 21 is not present in the visual field 60-2, the face 21 is supposed to be already turned toward the user U1 when the face 21 enters the field of view 60-2, and it is considered that the user U1 feels uncomfortable.

[0090] Note that the embodiments of the present disclosure mainly assume a case where the object control unit 129 suppresses the movement of the agent 20 by making the position of the agent 20 in the real space unchanged. However, the movement of the agent 20 may be suppressed in any way. For example, the object control unit 129 may suppress the movement of the agent 20 by moving the agent 20 in the real space slower than the movement of the agent 20 when the gaze point 50-1 is located at a position different from the position of the agent 20 (FIG. 4).

[0091] Referring to FIG. 6, the visual field of the user U1 has changed from the visual field 60-2 (FIG. 5) to a visual field 60-3. The determination unit 125 determines whether or not a gaze point 50-3 is located on the face 21 even after the face 21 is turned to the user U1. When the determination unit 125 determines that the gaze point 50-3 is located on the face 21, the object control unit 129 starts the control of communication from the agent 20 to the user U1, on the basis of the determination that the gaze point 50-3 is located on the face 21.

[0092] What kind of communication is performed from the agent 20 to the user U1 is not particularly limited. In the following, a case where the agent 20 communicates with the user U1 using sound information is mainly assumed. However, instead of the sound information or in addition to the sound information, the agent 20 may communicate with the user U1 by sensory information other than the sound information (for example, visual information or tactile information).

[0093] Furthermore, in the following, a case where communication to the user U1 is performed for a guidance (store guidance) related to a store on the map 30 where the gaze point 50-3 was located before the gaze point 50-3 is located on the face 21 is assumed. However, the communication performed from the agent 20 to the user U1 is not limited to the guidance for the user U1 and may be communication other than the guidance. The agent 20 is preferably located near (for example, next to) the store on the map 30 where the gaze point 50-3 was located. This makes it easier to understand which store is related to the guidance given by the agent 20.

[0094] Note that whether or not the gaze point is located on a store on the map 30 may be determined in any way. For example, the determination unit 125 acquires the three-dimensional position of the store on the map 30 in the real space. The three-dimensional position of the map 30 in the real space may be acquired in any way. Here, a case where the three-dimensional position of the map 30 in the real space is acquired from a server (not illustrated) via the communication unit 140 is mainly assumed. However, the three-dimensional position of the map 30 in the real space may be acquired from the storage unit 130.

[0095] The determination unit 125 can simply determine whether or not the gaze point of the user is located on a store on the map 30, on the basis of the three-dimensional position of the store on the map 30 in the real space and the gaze point.

[0096] Alternatively, the determination unit 125 may acquire the position of the store on the map 30 in the visual field of the user U1 by analyzing the visual field analysis image acquired by the visual field information acquisition unit 122. Then, the determination unit 125 may determine whether or not the gaze point is located on the store on the map 30, on the basis of the position of the store on the map 30 in the visual field of the user U1 and the gaze point.

[0097] Referring to FIG. 7, the visual field of the user U1 has changed from the visual field 60-3 (FIG. 6) to a visual field 60-4. The determination unit 125 determines whether or not a line-of-sight movement (second line-of-sight movement) has occurred in which a gaze point 50-4 moves toward the body 22 of the agent 20 or has moved to the body 22 of the agent 20. For example, the determination unit 125 can determine that the gaze point 50-4 has moved toward the body 22 when it is predicted that the gaze point 50-4 will reach the body 22, on the basis of a change in the gaze point 50-4 (before the gaze point 50-4 reaches the body 22). Meanwhile, the determination unit 125 can determine that the gaze point 50-4 has moved to the body 22 when the gaze point 50-4 is actually located on the body 22.

[0098] In the example illustrated in FIG. 7, the gaze point 50-4 is located on the body 22. Therefore, the determination unit 125 determines that the line-of-sight movement (second line-of-sight movement) has occurred in which the gaze point 50-4 has moved to the body 22. In this manner, when the determination unit 125 determines that the line-of-sight movement (second line-of-sight movement) in which the gaze point 50-4 moves toward the body 22 or has moved to the body 22 has occurred, the object control unit 129 simply moves the agent 20 such that the agent 20 leaves away from the gaze point 50-4, on the basis of such a line-of-sight movement (second line-of-sight movement). It is assumed that this makes it easier for the user U1 to visually recognize an object different from the agent 20, such as an object hidden by the agent 20. At this time, the agent 20 is preferably moved in a direction substantially opposite to the direction of the second line-of-sight movement. For example, when the direction of the second line-of-sight movement is a rightward direction, the agent 20 may be moved in a leftward direction. This movement ensures that the visual recognition of an object other than the agent 20 in which the user U1 is interested is not obstructed.

[0099] Note that, in the examples illustrated in FIGS. 6 and 7, when the determination unit 125 starts the communication control on the basis of the gaze point 50-3 (50-4) being located on the face 21 of the agent 20, it is desirable that the agent 20 is arranged on an upper side of the middle of the visual field. If the agent 20 is arranged on a lower side of the middle of the visual field, there is a possibility that, when the user U1 moves the line of sight downward without noticing the agent 20 present on a lower part of the peripheral visual field, the gaze point 50-3 (50-4) hits the face 21 of the agent 20 earlier than the body 22 of the agent 20. In this case, the determination unit 125 starts the control of communication with the agent 20 regardless of the communication intention of the user U1. As a result, the convenience of the user U1 is reduced in some cases. On the other hand, when the agent 20 is arranged on an upper side of the middle of the visual field, the gaze point 50-3 (50-4) hits the body 22 of the agent 20 earlier than the face 21 of the agent 20 even if the user U1 moves the line of sight upward. Accordingly, even when the user U1 moves the line of sight without noticing the agent 20 present in the peripheral visual field, the agent 20 first moves so as to leave away from the gaze point 50-3 (50-4). For this reason, the determination unit 125 can ensure not to obstruct the user U1 from visually recognizing an object other than the agent with respect to the line-of-sight movement of the user U1 in a vertical direction. Such control can be particularly favorably applied to a see-through type HMD having a restriction on the angle of view in the vertical direction.

[0100] Moreover, as illustrated in FIG. 7, the object control unit 129 may turn the face 21 toward the user U1 on the basis of the line-of-sight movement (second line-of-sight movement) in which the gaze point 50-4 moves toward the body 22 or has moved to the body 22. This makes it easier for the user U1 to intuitively understand that the gaze point 50-4 moves toward the body 22 or has moved to the body 22.

……
……
……

您可能还喜欢...