Sony Patent | Display element, display device, and electronic device
Patent: Display element, display device, and electronic device
Drawings: Click to check drawins
Publication Number: 20210217366
Publication Date: 20210715
Applicant: Sony
Abstract
A display element includes a light-emitting unit of a current drive type, and a drive unit that drives the light-emitting unit, in which the drive unit includes a capacitance unit, a drive transistor that causes a current corresponding to a voltage held by the capacitance unit to flow through the light-emitting unit, and a write transistor that writes a signal voltage to the capacitance unit, the drive transistor and the write transistor are formed in a state of being separated by an element isolation region, on a semiconductor substrate, and a capacitance generated in a portion where the drive transistor and the write transistor face each other through the element isolation region functions as at least a part of the capacitance unit.
Claims
-
A display device comprising: a light emitting element; a capacitive component; a sampling transistor configured to supply a data signal voltage from a data signal line to the capacitive component; and a driving transistor configured to supply a driving current to the light emitting element according to a voltage stored in the capacitive component, wherein the capacitive component includes a first capacitor and a second capacitor electrically connected in parallel with the first capacitor, a first end of the capacitive component is electrically connected to a gate electrode of the driving transistor, and a second end of the capacitive component is electrically connected to a first voltage line.
-
The display device according to claim 1, wherein the first end of the capacitive component is electrically directly connected to the gate electrode of the driving transistor, and the second end of the capacitive component is electrically directly connected to the first voltage line.
-
The display device according to claim 1, wherein a first source/drain region of the driving transistor is electrically connected to the first voltage line.
-
The display device according to claim 1, wherein the first voltage line is configured to supply a constant voltage to the driving transistor.
-
The display device according to claim 1, further comprising a switching transistor electrically connected between the driving transistor and the light emitting element.
-
The display device according to claim 1, wherein the driving transistor is a n-channel type transistor.
-
The display device according to claim 1, wherein the first capacitor is formed in a first layer and the second capacitor is formed in a second layer.
-
The display device according to claim 7, wherein, in a cross-sectional view, the first layer is higher than the second layer.
-
The display device according to claim 1, wherein a first electrode of the first capacitor is the gate electrode of the driving transistor or an electrode formed on a same layer as the gate electrode of the driving transistor.
-
The display device according to claim 1, wherein the first capacitor and the second capacitor are different types of capacitors.
-
The display device according to claim 10, wherein the first capacitor is a MIM (Metal-Insulator-Metal) capacitor.
-
The display device according to claim 1, wherein an isolation region is formed between a semiconductor region of the driving transistor and a semiconductor region of the sampling transistor.
-
The display device according to claim 12, wherein the isolation region is formed by a shallow trench isolation structure in which an insulator is embedded in a groove that extends into a surface of a semiconductor substrate.
Description
CROSS REFERENCES TO RELATED APPLICATIONS
[0001] The present Application is a Continuation Application of U.S. patent application Ser. No. 16/647,841 filed Mar. 16, 2020, which is a 371 National Stage Entry of International Application No. PCT/JP2018/031892, filed on Aug. 29, 2018, which in turn claims priority from Japanese Application No. 2017-182677, filed on Sep. 22, 2017, the entire contents of which are incorporated herein by reference.
TECHNICAL FIELD
[0002] The present disclosure relates to a display element, a display device, and an electronic device. More specifically, the present disclosure relates to a display element used for a micro-display that requires a pixel pitch in units of micrometers, a display device including the display element, and an electronic device including the display device.
BACKGROUND ART
[0003] A display element is known including a light-emitting unit of a current drive type, and a display device is known including the display element. For example, a display element including a light-emitting unit including an organic electroluminescence element has been attracting attention as a display element capable of high luminance light emission by low voltage direct current drive. Then, a display device including the organic electroluminescence element is used not only in a direct-view display, but also in a micro-display that requires a pixel pitch in units of micrometers.
[0004] To realize a pixel pitch in units of micrometers, a drive unit that drives the light-emitting unit of the current drive type is formed on a semiconductor substrate (see, for example, Patent Document 1). The drive unit includes a plurality of transistors and the like. Thus, to separate adjacent transistors, an element isolation region is required between the transistors. In such an application, a so-called shallow trench isolation (STI) method is preferable capable of forming the element isolation region more finely than a local oxidation of silicon (LOCOS) method.
CITATION LIST
Patent Document
[0005] Patent Document 1: Japanese Patent Application Laid-Open No. 2014-98779
SUMMARY OF THE INVENTION
Problems to be Solved by the Invention
[0006] As the pixel pitch becomes finer, the distance becomes narrower between the transistors facing each other across the element isolation region. As a result, a capacitance increases generated between the transistors facing across the element isolation region. Then, it is conceivable that a burn-in phenomenon of a display image due to a change with time of the light-emitting unit is emphasized by influence of the capacitance.
[0007] Thus, an object of the present disclosure is to provide a display element in which the capacitance generated between the transistors does not emphasize the burn-in phenomenon of the display image, a display device including the display element, and an electronic device including the display device.
Solutions to Problems
[0008] A display element according to a first aspect of the present disclosure for achieving the object described above is
[0009] a display element including
[0010] a light-emitting unit of a current drive type, and a drive unit that drives the light-emitting unit, in which
[0011] the drive unit includes a capacitance unit, a drive transistor that causes a current corresponding to a voltage held by the capacitance unit to flow through the light-emitting unit, and a write transistor that writes a signal voltage to the capacitance unit,
[0012] the drive transistor and the write transistor are formed in a state of being separated by an element isolation region, on a semiconductor substrate, and
[0013] a capacitance generated in a portion where the drive transistor and the write transistor face each other through the element isolation region functions as at least a part of the capacitance unit.
[0014] A display device according to the first aspect of the present disclosure for achieving the object described above is
[0015] a display device including
[0016] display elements arrayed in a two-dimensional matrix, in which
[0017] the display elements each include a light-emitting unit of a current drive type, and a drive unit that drives the light-emitting unit,
[0018] the drive unit includes a capacitance unit, a drive transistor that causes a current corresponding to a voltage held by the capacitance unit to flow through the light-emitting unit, and a write transistor that writes a signal voltage to the capacitance unit,
[0019] the drive transistor and the write transistor are formed in a state of being separated by an element isolation region, on a semiconductor substrate, and
[0020] a capacitance generated in a portion where the drive transistor and the write transistor face each other through the element isolation region functions as at least a part of the capacitance unit.
[0021] An electronic device according to the first aspect of the present disclosure for achieving the object described above is
[0022] an electronic device including
[0023] a display device including display elements arrayed in a two-dimensional matrix, in which
[0024] the display elements each include a light-emitting unit of a current drive type, and a drive unit that drives the light-emitting unit,
[0025] the drive unit includes a capacitance unit, a drive transistor that causes a current corresponding to a voltage held by the capacitance unit to flow through the light-emitting unit, and a write transistor that writes a signal voltage to the capacitance unit,
[0026] the drive transistor and the write transistor are formed in a state of being separated by an element isolation region, on a semiconductor substrate, and
[0027] a capacitance generated in a portion where the drive transistor and the write transistor face each other through the element isolation region functions as at least a part of the capacitance unit.
Effects of the Invention
[0028] In the display element of the present disclosure, the drive unit includes the drive transistor that causes the current corresponding to the voltage held by the capacitance unit to flow through the light-emitting unit, and the write transistor that writes the signal voltage to the capacitance unit. Then, the capacitance generated in the portion where the drive transistor and the write transistor face each other through the element isolation region functions as at least a part of the capacitance unit. As a result, it is possible to avoid that the burn-in phenomenon due to influence of the change with time of the voltage-current characteristic (V-I) characteristic of the light-emitting unit of the current drive type is emphasized by the influence of the capacitance. Furthermore, the advantageous effects described in the present disclosure are examples, and are not limited to them and may include additional effects.
BRIEF DESCRIPTION OF DRAWINGS
[0029] FIG. 1 is a conceptual diagram of a display device according to a first embodiment.
[0030] FIG. 2 is an equivalent circuit diagram of a display element including a light-emitting unit and a drive unit that drives the light-emitting unit.
[0031] FIG. 3 is a schematic partial cross-sectional view of a portion including the display element in a display area.
[0032] FIG. 4 is a schematic plan view for explaining an arrangement of transistors in a drive unit according to the first embodiment.
[0033] FIG. 5 is a schematic cross-sectional view for explaining a cross-sectional structure of the transistors in the drive unit according to the first embodiment.
[0034] FIG. 6 is a schematic plan view for explaining an arrangement of the transistors in a drive unit of a reference example.
[0035] FIG. 7 is a schematic cross-sectional view for explaining a cross-sectional structure of the transistors in the drive unit of the reference example.
[0036] FIG. 8 is a conceptual diagram of a display device including a display element including the drive unit of the reference example.
[0037] FIG. 9A is a schematic diagram for explaining a relationship between a current flowing through a light-emitting unit including an organic electroluminescence element and a voltage between the anode electrode and the cathode electrode of the light-emitting unit. FIG. 9B is a schematic graph for explaining a change with time of the voltage-current characteristic (V-I) characteristic of the light-emitting unit.
[0038] FIG. 10A is a schematic circuit diagram for explaining a drain current that flows during light emission of the display element including the drive unit of the reference example. FIG. 10B is a schematic graph for explaining operation of the display element including the drive unit of the reference example.
[0039] FIG. 11 is an equivalent circuit diagram of a display element in the first embodiment.
[0040] FIG. 12 is a schematic plan view for explaining a shield wiring line in the drive unit of the reference example.
[0041] FIG. 13 is a schematic plan view for explaining a shield wiring line in the drive unit of the first embodiment.
[0042] FIG. 14 is a schematic cross-sectional view for explaining a cross-sectional structure of the transistors according to a first modification of the first embodiment.
[0043] FIG. 15 is a conceptual diagram of a display device according to a second embodiment.
[0044] FIG. 16 is a schematic plan view for explaining an arrangement of the transistors in a drive unit according to the second embodiment.
[0045] FIG. 17 is a conceptual diagram of a display device according to a third embodiment.
[0046] FIG. 18 is a schematic plan view for explaining an arrangement of the transistors in a drive unit according to the third embodiment.
[0047] FIGS. 19A-B are external views of a lens interchangeable single lens reflex type digital still camera, and FIG. 19A illustrates a front view of the camera and FIG. 19B illustrates a rear view of the camera.
[0048] FIG. 20 is an external view of a head mounted display.
[0049] FIG. 21 is an external view of a see-through head mounted display.
MODE FOR CARRYING OUT THE INVENTION
[0050] Hereinafter, the present disclosure will be described on the basis of embodiments with reference to the drawings. The present disclosure is not limited to the embodiments, and various numerical values and materials in the embodiments are examples. In the following description, the same reference signs will be used for the same elements or elements having the same function, and redundant description will be omitted. Note that, description will be given in the following order.
[0051] 1. General description related to display element, display device, and electronic device according to present disclosure
[0052] 2. First embodiment
[0053] 3. Second embodiment
[0054] 4. Third embodiment
[0055] 5. Description of electronic device and others
General Description Related to Display Element, Display Device, and Electronic Device according to Present Disclosure
[0056] As described above, a display element according to a first aspect of the present disclosure, and a display element used for a display device according to the first aspect of the present disclosure and an electronic device according to the first aspect of the present disclosure (hereinafter, these may be simply referred to as “display elements of the present disclosure”) each include a light-emitting unit of a current drive type, and
[0057] a drive unit that drives the light-emitting unit, in which
[0058] the drive unit includes a capacitance unit, a drive transistor that causes a current corresponding to a voltage held by the capacitance unit to flow through the light-emitting unit, and a write transistor that writes a signal voltage to the capacitance unit,
[0059] the drive transistor and the write transistor are formed in a state of being separated by an element isolation region, on a semiconductor substrate, and
[0060] a capacitance generated in a portion where the drive transistor and the write transistor face each other through the element isolation region functions as at least a part of the capacitance unit.
[0061] In the display element of the present disclosure,
[0062] a configuration can be made in which
[0063] the drive transistor and the write transistor are provided in a well formed in the semiconductor substrate,
[0064] the drive transistor includes a first source/drain region to which a feeder line is connected and a second source/drain region connected to one end of the light-emitting unit,
[0065] the write transistor includes a first source/drain region to which the signal voltage is supplied externally and a second source/drain region connected to a gate electrode of the drive transistor, and
[0066] the second source/drain region of the write transistor and the first source/drain region of the drive transistor are formed to face each other through the element isolation region.
[0067] In the display element of the present disclosure including various preferable configurations described above, a configuration can be made in which the element isolation region is formed by a shallow trench isolation (STI) structure in which an insulator is embedded in a groove dug in a surface of the semiconductor substrate.
[0068] In this case,
[0069] a configuration can be made in which
[0070] an impurity diffusion layer that forms a source/drain region of the drive transistor and an impurity diffusion layer that forms a source/drain region of the write transistor are set to have a junction depth of greater than or equal to 1 micrometer.
[0071] In the display element of the present disclosure including various preferable configurations described above, a configuration can be made in which the drive transistor includes a p-channel field effect transistor. In this case, the write transistor may have an n-channel configuration or a p-channel configuration. From a viewpoint of standardization of manufacturing processes, the conductivity type of the write transistor is preferably a p-channel field effect transistor that is the same as that of the drive transistor.
[0072] In the display element of the present disclosure including various preferable configurations described above, a configuration can be made in which a shield wiring line is provided around a gate wiring line that connects the second source/drain region of the write transistor and the gate electrode of the drive transistor to each other. In this case, a configuration can be made in which the shield wiring line is connected to the feeder line.
[0073] In the display element of the present disclosure including various preferable configurations described above, a configuration can be made in which the drive unit further includes another transistor. A configuration can be made in which the drive unit further includes a switching transistor connected between the feeder line and the first source/drain region of the drive transistor, or alternatively, the drive unit further includes a switching transistor connected between the one end of the light-emitting unit and the second source/drain region of the drive transistor.
[0074] As the light-emitting unit of the current drive type constituting the display element of the present disclosure including the various preferable configurations described above, it is possible to use an organic electroluminescence element, an LED element, a semiconductor laser element, or the like. These elements can be configured using known materials and methods. From a viewpoint of configuring a flat type display device, it is preferable that a configuration is made in which the light-emitting unit includes an organic electroluminescence element among the elements.
[0075] Hereinafter, the display element, the display device, and the electronic device according to the present disclosure may be simply referred to as the present disclosure.
[0076] A source driver and the like that drive the display device may be integrated together on the semiconductor substrate on which the display elements are arranged, or may be appropriately configured as a separate body. These can be configured using known circuit elements. For example, a source driver, a power supply unit, and a vertical scanner illustrated in FIG. 1 can also be configured using known circuit elements. In applications where downsizing is required, such as a display device for a head mounted display or a viewfinder, it is preferable that the display elements and the driver are formed on the same semiconductor substrate.
[0077] The display device may have a so-called monochrome display configuration or a color display configuration. In the case of a color display configuration, a configuration can be made in which one pixel includes a plurality of subpixels, specifically, one pixel includes a set of a red display element, a green display element, and a blue display element. Moreover, a configuration can also be made in which one set includes additional one type or multiple types of display element together with these three types of display elements.
[0078] As values of the pixels of the display device, in addition to U-XGA (1600, 1200), HD-TV (1920, 1080), and Q-XGA (2048, 1536), some of the image display resolutions can be exemplified, such as (3840, 2160), and (7680, 4320); however, the values of the pixels of the display device are not limited to these values.
[0079] Various conditions described in the present specification are satisfied not only in a case where the conditions mathematically strictly holds but also in a case where the conditions substantially holds. Presence of various variations in design or manufacturing is allowed. Furthermore, each drawing used in the following description is schematic and does not indicate actual dimensions and ratios thereof. For example, FIG. 3 described later illustrates a cross-sectional structure of the display device, but does not indicate the ratio of width, height, thickness, and the like. Furthermore, the shape of the waveform in the timing chart illustrated in, for example, FIG. 10 is also schematic.
First Embodiment
[0080] A first embodiment relates to a display element, a display device, and an electronic device according to the first aspect of the present disclosure.
[0081] FIG. 1 is a conceptual diagram of the display device according to the first embodiment.
[0082] First, an outline will be described of the display device with reference to FIG. 1. A display device 1 includes display elements 70 arrayed in a two-dimensional matrix. More specifically, the display elements 70 are arrayed in a two-dimensional matrix having a total of N.times.M elements, N elements in the row direction and M elements in the column direction, in a state where each of the display elements 70 is connected to a scanning line WS1 and a feeder line (current supply line) PS1 extending in the row direction (X direction in FIG. 1), and a data line DTL extending in the column direction (Y direction in FIG. 1).
[0083] The display elements 70 arrayed in a two-dimensional matrix form a display area 80 that displays an image. The number of rows of the display elements 70 in the display area 80 is M, and the number of the display elements 70 constituting the rows is N.
[0084] The number of the scanning lines WS1 and the number of the feeder lines PS1 are each M. The display elements 70 in the m-th row (where m=1, 2, … , M) are connected to the m-th scanning line WS1.sub.m and the m-th feeder line PS1.sub.m, and constitute one display element row.
[0085] Note that, the number of control lines DS1 illustrated in FIG. 15 and the number of control lines EM1 illustrated in FIG. 17, described later, each are also M, and the m-th control line DS1.sub.m and control line EM1.sub.m are connected to the display elements in the m-th row.
[0086] The number of the data lines DTL is N. The display elements 70 in the n-th column (where n=1, 2, … , N) are connected to the n-th data line DTL.sub.n.
[0087] Note that, although not illustrated in FIG. 1, the display device 1 includes a common feeder line PS2 connected to all the display elements 70 in common. For example, a ground potential is regularly supplied as a common voltage to the common feeder line PS2.
[0088] The display device 1 includes a source driver 110 that drives the display area 80, a power supply unit 120, and a vertical scanner 130.
[0089] The display area 80 is formed on a semiconductor substrate including silicon. Note that, the source driver 110, the power supply unit 120, and the vertical scanner 130 are also formed on a semiconductor substrate 100. That is, the display device 1 is a driver circuit integrated display device.
[0090] A signal LD.sub.sig representing a gradation corresponding to an image to be displayed is input to the source driver 110 from a device not illustrated, for example. The signal LD.sub.sig is, for example, a low voltage digital signal. The source driver 110 is used to generate an analog signal corresponding to a gradation value of the video signal LD.sub.sig and supply the analog signal to the data line DTL as a video signal. The analog signal to be generated is a signal having a peak value of about 10 volts, for example.
[0091] The vertical scanner 130 supplies a scanning signal to the scanning line WS1. In accordance with the scanning signal, line-sequential scanning is performed on the display elements 70 for each row. Corresponding to scanning of the scanning line WS1, the power supply unit 120 supplies a predetermined drive voltage to the feeder line PS1.
[0092] The display device 1 is, for example, a color display device, and a group of three display elements 70 arranged in the row direction constitutes one pixel. Thus, if N’=N/3, a total of N’.times.M pixels, N’ pixels in the row direction and M pixels in the column direction, are arrayed in the display area 80.
[0093] As described above, line-sequential scanning is performed on the display elements 70 for each row by the scanning signal of the vertical scanner 130. The display element 70 located in the m-th row and the n-th column is hereinafter referred to as the (n, m)-th display element 70.
[0094] In the display device 1, N display elements 70 arrayed in the m-th row are driven simultaneously. In other words, in the N display elements 70 arranged along the row direction, timing of light emission/non-light emission is controlled for each row to which the N display elements 70 belong. If a display frame rate of the display device 1 is represented as FR (times/second), the scanning period per row (so-called horizontal scanning period) when the line-sequential scanning is performed on the display device 1 for each row is less than (1/FR).times.(1/M) seconds.
[0095] An outline of the display device 1 has been described above. Next, details of the display elements 70 will be described.
[0096] FIG. 2 is an equivalent circuit diagram of the display element including the light-emitting unit and the drive unit that drives the light-emitting unit. Note that, for convenience of illustration, FIG. 2 illustrates a connection relationship for one display element 70, more specifically, the (n, m)-th display element 70.
[0097] The display element 70 includes a light-emitting unit ELP of the current drive type and a drive unit 71 that drives the light-emitting unit ELP. The drive unit 71 includes a capacitance unit C.sub.S, a drive transistor TR.sub.D that causes a current corresponding to a voltage held by the capacitance unit C.sub.S to flow through the light-emitting unit ELP, and a write transistor TR.sub.W that writes a signal voltage to the capacitance unit C.sub.S.
[0098] The light-emitting unit ELP is a light-emitting unit of the current drive type whose light emission luminance changes depending on a value of a current flowing, and specifically, includes an organic electroluminescence element. The light-emitting unit ELP has known configuration and structure including an anode electrode, a hole transporting layer, a light emitting layer, an electron transporting layer, a cathode electrode, and the like.
[0099] The drive transistor TR.sub.D includes a p-channel transistor. Furthermore, the write transistor TR.sub.W also includes a p-channel field effect transistor. Note that, the write transistor TR.sub.W may be an n-channel field effect transistor.
[0100] The capacitance unit C.sub.S is used to hold a voltage of the gate electrode with respect to the source region of the drive transistor TR.sub.D (so-called gate-source voltage). During light emission of the display element 70, a first source/drain region (the side connected to the feeder line PS1 in FIG. 2) of the drive transistor TR.sub.D serves as the source region, and a second source/drain region serves as the drain region. A first electrode and a second electrode constituting the capacitance unit C.sub.S are connected to the first source/drain region and the gate electrode of the drive transistor TR.sub.D, respectively. The second source/drain region of the drive transistor TR.sub.D is connected to the anode electrode of the light-emitting unit ELP.
[0101] The write transistor TR.sub.W has the gate electrode connected to the scanning line WS1, a first source/drain region connected to the data line DTL, and a second source/drain region connected to the gate electrode of the drive transistor TR.sub.D.
[0102] The other end (specifically, the cathode electrode) of the light-emitting unit ELP is connected to the common feeder line PS2. A predetermined voltage V.sub.Cath is supplied to the common feeder line PS2. Note that, a capacitance of the light-emitting unit ELP is represented by a reference sign C.sub.EL. In a case where the capacitance C.sub.EL of the light-emitting unit ELP is small so that a trouble occurs in driving the display element 70, for example, it is only required to provide an auxiliary capacitance connected in parallel to the light-emitting unit ELP as necessary.
[0103] When the write transistor TR.sub.W is made to be in the conductive state by the scanning signal from the vertical scanner 130 in a state where the voltage corresponding to the luminance of the image to be displayed on the data line DTL is supplied from the source driver 110, a voltage corresponding to a gradation value of the image to be displayed is written to the capacitance unit C.sub.S. Then, the write transistor TR.sub.W is made to be in the non-conductive state, a current flows through the drive transistor TR.sub.D depending on the voltage held in the capacitance unit C.sub.S, and the light-emitting unit ELP emits light.
[0104] Here, the drive transistor TR.sub.D is driven so that a drain current I.sub.ds flows in accordance with the following formula (1) in the light emitting state of the light-emitting unit ELP. In the light emitting state of the light-emitting unit ELP, the first source/drain region of the drive transistor TR.sub.D serves as the source region, and the second source/drain region serves as the drain region. Note that,
[0105] parameters represent
[0106] .mu.: Effective mobility
[0107] L: Channel length
[0108] W: Channel width
[0109] V.sub.CC: Drive voltage supplied to source region
[0110] V.sub.sig: Signal voltage applied to gate electrode
[0111] V.sub.th: Threshold voltage
[0112] C.sub.ox: (Relative dielectric constant of gate insulating layer).times.(dielectric constant of vacuum)/(thickness of gate insulating layer)
k.ident.(1/2)(W/L)C.sub.ox
I.sub.ds=k.mu.((V.sub.CC-V.sub.sig)-|V.sub.th|).sup.2 (1)
[0113] Here, a three-dimensional arrangement relationship will be described among the light-emitting unit ELP, the transistor, and the like. FIG. 3 is a schematic partial cross-sectional view of a portion including the display element in the display area.
[0114] Each transistor constituting the display element 70 is formed, for example, on a semiconductor substrate (reference numeral 100 illustrated in FIG. 1) in which a semiconductor layer 20 including silicon is formed on a base material 10. More specifically, the drive transistor TR.sub.D and the write transistor TR.sub.W are provided in an n well 21 formed in the semiconductor layer 20. Note that, for convenience of illustration, only the drive transistor TR.sub.D is illustrated in FIG. 3. Reference numerals 23A and 23B denote a pair of source/drain regions of the drive transistor TR.sub.D.
[0115] Each transistor is surrounded by an element isolation region 22. A reference numeral 32 denotes the gate electrode of the transistor TR.sub.D, and a reference numeral 31 denotes the gate insulating layer. As will be described later with reference to FIG. 4, the drive transistor TR.sub.D and the write transistor TR.sub.W are formed on the semiconductor substrate in a state of being separated by the element isolation region 22. Note that, for convenience of illustration, in FIGS. 4, 5, 6, 7, 12, 13, 14, 16, and 18 described later, the gate electrode is represented by reference numeral 31 regardless of the type of the transistor.
[0116] A second electrode 32’ constituting the capacitance unit Cs includes the same material layer as the gate electrode 32, and is formed on an insulating layer 31’ including the same material layer as the gate insulating layer 31. An interlayer insulating layer 33 is formed on the entire surface of the semiconductor layer 20 including the gate electrode 32 of the drive transistor TR.sub.D and the electrode 32’. The electrode 32’ and an electrode 34 described later are arranged to face each other across the interlayer insulating layer 33.
[0117] The first source/drain region 23A of the drive transistor TR.sub.D is connected to the feeder line PS1 and the electrode 34 through a contact hole 35 provided in the interlayer insulating layer 33. Note that, the connection portion is hidden and not visible in FIG. 3. On the interlayer insulating layer 33, an interlayer insulating layer 40 is further formed.
[0118] On the interlayer insulating layer 40, the light-emitting unit ELP is provided including an anode electrode 51, a hole transporting layer, a light emitting layer, an electron transporting layer, and a cathode electrode 53. Note that, in the drawing, the hole transporting layer, the light emitting layer, and the electron transporting layer are represented by a single layer 52. A second interlayer insulating layer 54 is provided on a portion of the interlayer insulating layer 40 where the light-emitting unit ELP is not provided, a transparent substrate 60 is arranged on the second interlayer insulating layer 54 and the cathode electrode 53, and light emitted from the light emitting layer passes through the substrate 60 and is emitted to the outside.
[0119] The anode electrode 51 and the second source/drain region 23B of the drive transistor TR.sub.D are connected through a contact hole 36 provided in the interlayer insulating layer 33, and the like. Note that, in FIG. 3, the connection portion is hidden and not visible.
[0120] Furthermore, the cathode electrode 53 is connected to a wiring line 37 (corresponding to the common feeder line PS2 to which the voltage V.sub.Cath is supplied) provided on an extending portion of the interlayer insulating layer 33 through contact holes 56 and 55 provided in the second interlayer insulating layer 54 and the interlayer insulating layer 40.
[0121] The three-dimensional arrangement relationship has been described above among the light-emitting unit ELP, the transistor, and the like. Next, an arrangement will be described of the transistors in the drive unit according to the first embodiment.
[0122] FIG. 4 is a schematic plan view for explaining the arrangement of the transistors in the drive unit according to the first embodiment. FIG. 5 is a schematic cross-sectional view for explaining a cross-sectional structure of the transistors in the drive unit according to the first embodiment.
[0123] As illustrated in FIGS. 4 and 5, the drive transistor TR.sub.D and the write transistor TR.sub.W are formed on the semiconductor substrate in a state of being separated by the element isolation region 22. Then, a second source/drain region 23D of the write transistor TR.sub.W and the first source/drain region 23A of the drive transistor TR.sub.D are formed to face each other through the element isolation region 22. The element isolation region 22 is formed by the shallow trench isolation (STI) structure in which the insulator is embedded in the groove dug in the surface of the semiconductor substrate.
[0124] As described above, the drive transistor TR.sub.D includes the first source/drain region 23A to which the feeder line PS1 is connected and the second source/drain region 23B connected to one end of the light-emitting unit ELP. Furthermore, the write transistor TR.sub.W includes a first source/drain region 23C to which the signal voltage is supplied from the outside, and the second source/drain region 23D connected to the gate electrode of the drive transistor TR.sub.D.
[0125] As the pixel pitch becomes finer, the inter-terminal distance is reduced between the second source/drain region 23D of the write transistor TR.sub.W and the second source/drain region 23A of the drive transistor TR.sub.D. As a result, a capacitance (parasitic capacitance) (represented by a reference sign C.sub.S1) through the embedded insulator used as the element isolation region 22 increases.
[0126] However, in the drive unit 71 of the present disclosure, the capacitance generated in a portion where the drive transistor TR.sub.D and the write transistor TR.sub.W face each other through the element isolation region 22 functions as at least a part of the capacitance unit. As will be described in detail later with reference to FIG. 11, in this configuration, the capacitance generated between the transistors does not emphasize the burn-in phenomenon of the display image.
[0127] Next, to help understanding of the present disclosure, an arrangement of the transistors and problems will be described in a drive unit of a reference example in which the burn-in phenomenon is emphasized by the capacitance generated between the transistors.
[0128] FIG. 6 is a schematic plan view for explaining the arrangement of the transistors in the drive unit of the reference example. FIG. 7 is a schematic cross-sectional view for explaining a cross-sectional structure of the transistors in the drive unit of the reference example.
[0129] As is clear by comparing FIGS. 4 and 6, in the drive unit of the reference example (represented by a reference numeral 971 in FIG. 8 described later), a connection relationship between the pair of source/drain regions 23A and 23B of the drive transistor TR.sub.D, and the feeder line PS1 and the light-emitting unit ELP is opposite to that of the drive unit 71 of the first embodiment.
[0130] Also in this connection, a capacitance is generated in the portion where the drive transistor TR.sub.D and the write transistor TR.sub.W face each other through the element isolation region 22. The capacitance is represented by a sign C.sub.GA.
……
……
……